Disease Essay

Cheap Custom Writing Service

This Disease Essay example is published for educational and informational purposes only. If you need a custom essay or research paper on this topic, please use our writing services. EssayEmpire.com offers reliable custom essay writing services that can help you to receive high grades and impress your professors with the quality of each essay or research paper you hand in.

While the concept of disease might appear to be straightforward, it is actually highly complex. Its definition varies across geographic and temporal context and it must be considered in relation to how health and illness are also defined. In its simplest form, disease is a condition that has been diagnosed by a medical practitioner. In the West, biomedical practitioners, also called allopathic physicians, generally determine how a particular disease is defined. A disease, then, is something that can be operationalized biomedically, where the link between a cause and effect might be known. Illnesses, on the other hand, may manifest themselves without any clear cause or disease etiology. It is common to have a cold without the presence of a disease. Disease is often contrasted to health, which is even more difficult to define or measure. There is no ideal time when someone is in a total state of health. So, social and physical scientists tend to focus extensively on disease causation, effects, distributions, and diffusions.

Epidemiology

The study of diseases in human communities is called epidemiology. Epidemiologists investigate the biological, social, historical, or geographical relationships between a disease and its consequences. In any epidemiological study, the focus is on mortality (death) and morbidity (disease and/or illness) and the causal links between the two. The goal of epidemiology is twofold: to understand why morbidity or mortality rates may rise or fall; and to try to understand how and why a disease may wane and how to control future spread. The factors leading to increased morbidity and mortality rates may be biophysical, social, or environmental. Epidemiologists examine different diseases in their biological, social, or environmental contexts to determine how to reduce the spread and effects of particular diseases. Moreover, epidemiologists seek to identify new illnesses and place them into disease categories.

Many diseases fit into two broad categories: chronic or acute. Chronic diseases (or illnesses) are long-term conditions that may or may not require medical intervention, such as heart disease or high cholesterol. Acute diseases (or illnesses) are intense, short-term conditions, such as influenza or strep throat. Some chronic diseases are differentially intense, causing periods of decreased mobility or feelings of ill health. Depending on the person and their current state of health and the broader circumstances, both chronic and acute diseases can be the cause of mortality. Some diseases are also considered infectious, spreading from one person or animal to another person or animal, or even through one animal or insect to another animal or insect, and then to a human. Often, epidemiologists are interested in understanding the vector of an infectious disease, the subject through whom a disease passes as it spreads. Some infectious diseases can be carried from an insect to a human (such as malaria), while others are purely humanto-human (such as HIV).

When studying the spread of diseases, it is important to examine a multitude of factors, including the overall population that is impacted by a particular disease, the environmental context (broadly conceived) in which that disease is spreading, and the individual or community-based behaviors or practices that might intensify or mitigate the diffusion of a particular disease. It is impossible to partition one of these areas out from the rest, and so social scientists must consider the interrelationships among the multitude of factors that intensify certain disease distributions and limit others. Moreover, it is critical that those studying diseases take into consideration the broader socio-cultural and political-economic contexts that play a crucial role in determining how certain diseases spread and why others may be stopped. As an example, malaria eradication programs have been very effective in a number of highly industrialized economies, while this particular disease, spread via mosquitoes, remains a leading killer of people in many parts of the developing world. There is thus a geography that underlies any disease distribution or pattern, a geography based in the context of human-environmental and social relationships.

Often misunderstood by the general public, therefore, are the social power dynamics that impact disease distributions. This is because biomedicine often constructs diseases as spread through germs (or other microbes), focusing our attention on the microbiology of disease dynamics. While the biological is always important, the political and economic context may play an even more significant role in the daily lives of those at risk for disease. Some social scientists have thus turned to the subdiscipline of political ecology as a framework for explaining the complex intersections between humans and their environments and the emergence of diseases. A political ecology of disease suggests that scientists must examine the environmental as well as the human factors of diseases in tandem, since there is no way to divest disease causation from its broader human context.

Political Ecology

In taking a political ecology approach, the distribution and diffusion of diseases as emerging out of the dynamic environment can be investigated, much of which is based in human-induced change. As an example, recent studies have shown that the use of certain pesticides in agriculture found throughout many areas of Latin America might cause long-term neurological, gastrointestinal, or physiological diseases (or illnesses). Over time, extensive exposure can lead to long-term problems, including the onset of certain cancers.

As another example, shrimp farming can produce, in areas with endemic malaria or dengue hemorrhagic fever, such as Vietnam or Eritrea, new, large sites of standing water ideal for the breeding of mosquitoes. These mosquitoes have the potential to further spread malaria or dengue fever. Recent studies have also shown that schistosomiasis, a parasitic infectious disease that develops in water-based snails and spreads to humans, has become endemic in new flood areas around dams. The most recent example is that of the Three Gorges Dam area in China, where the expansion of water on the land has been linked to the potential for this disease to spread to multiple communities. This is similar to what happened along Lake Volta in Ghana, a human-created lake that was linked to an increase in cases of schistosomiasis.

Susceptibility to these diseases, based in changes to the environment, are not without socio-cultural and political-economic links. It is often the case that extended exposure to pesticides, malarial exposure via shrimp farming, or contact with the parasites that cause shistosomiasis are more common among the working poor. In fact, in all three cases, the root of transmission is as much a product of the political-economic context as it is the biological one. For example, in industrialized agricultural economies, regulations have been put in place to mitigate the use of certain toxic pesticides. Such regulation is less likely in developing economies. The daily operation of industrialized shrimp farms is often left to the working poor, who are more likely to see dayto-day exposure to the mosquitoes breeding in these farms. And, those who must use water from rivers or man-made lakes that might contain high levels of parasites because they have no running water, are much more likely to encounter schistosomiasis.

Intensified Urbanization

There are other ways, however, that shifts in the ecology of certain places might lend themselves to the expansion of diseases. For example, intensified urbanization. Proximity to freeways, ports, or industrial parks might increase the likelihood of having asthma. Diseases of the skin and regular rashes are also common among those living close to these hazards. Crowded urban areas, particularly in poorer neighborhoods, can intensify the rate of tuberculosis or whooping cough infections, which are spread via the human respiratory system. The outbreak of SARS (severe acute respiratory syndrome) was concentrated in major metropolitan areas, such as Hong Kong and Singapore, and was linked to wind flow patterns in certain high-rise complexes in Hong Kong, in particular.

As an airborne disease, SARS spread quickly and was quite dangerous to the most vulnerable, particularly children and the elderly. The close proximity of urban living and the built environment of the high rise partially accounted for the rapid spread of this particular disease. This means, as well, particularly in countries such as the United States, that certain ethnic and racial communities are more susceptible to certain diseases. The rates of respiratory infection are particularly high among poor African Americans in heavily polluted urban areas in proximate location to factories and freeway systems, for example.

Throughout history, diseases have also spread from one population to the next via the ever-increasing interconnections present in the economy. In historical context, the Silk Road was not only a vehicle of dynamic economic exchange and sociocultural diffusion between the Mediterranean and East Asia; it was also a vehicle for the transportation of diseases from one place to the next. Smallpox, measles, and the bubonic plague spread throughout the regions of the Silk Road. These diseases spread to areas where people lacked any immune experience to deal with their spread, and this held dire consequences for those who came into contact with these diseases. On occasion, diseases have been used intentionally as weapons, thus also facilitating their global spread. Syphilis also traveled via an expanded global network of trade. The intensified sexual and drug-using networks made available by modern-day air transportation, which linked cities such as New York and Port-au-Prince in the 1980s, facilitated the spread of diseases such as HIV. SARS was identified as having moved from Asia to Canada via the air transportation system, which led the World Health Organization to briefly recommend the quarantine of the Toronto area and its airport.

The distribution of diseases and the fear attached to them often has dire political-economic consequences. Take, for example, Bovine Spongiform Encephalopathy (BSE) or “mad cow disease.” This disease, which can spread from a cow to a human who ingests that cow, significantly impacted the British beef market. Travelers from the United Kingdom are asked to report if they have been in a rural area when entering the United States as a way to mitigate the spread of BSE in the United States. Despite these efforts, there have been a few cases of BSE reported in the United States, prompting the Japanese government to stop the import of U.S. beef into their country. This debate over the link between an economic import and the spread of a deadly disease has led to an intense economic struggle between these two trading partners. In another case, Haiti in the 1980s was identified as a key site for the spread of HIV, leading to the decimation of their tourist economy. Fear of SARS and Avian Bird Flu has similarly hurt the tourism economies of Hong Kong and Thailand.

Ironically, there are also potential consequences when the biological environment is intentionally modified to reduce certain diseases. The recent controversy over the link between heavy metals (particularly mercury or thimesoral) in vaccines and autism among young children is an example. Despite protestations from the pharmaceutical and medical communities, thimesoral has been removed from many vaccines in the last five years because of the intense scrutiny it has received. Mercury has been replaced with aluminum, which is sometimes linked to Alzheimer’s and dementia, although no link has been made about the long-term effects of aluminum-based vaccines. So vaccines, despite their widespread use and high rates of success for stemming the diffusion of certain diseases, are not without controversy or concern. The hope that penicillin and other medicines more generally would put an end to infectious diseases in the 1970s, for example, has not come to fruition. Scientists underestimated the mutability of diseases.

Some of the most significant problems today stem from the fact that new forms of old diseases are emerging that are resistant to the prophylactics meant to stem their spread. Newly developed malarial medications have not been able to keep pace with the mutation of malaria. It is quite possible to contract a strain of malaria that is drug resistant. Antibiotics, once seen as a panacea for all diseases, have been given in such large quantities for viral infections (where they are ineffective because antibiotics fight bacterial infections) that they are becoming ineffective against bacterial infections as well. In some cases, antibiotics have also destroyed the good bacteria in the body, giving rise to a new regime of medications called probiotics, designed to promote bacterial growth in the body; for example, in digestion. More generally, vaccine and other pharmaceutical developments are also controversial because they often pit individual rights (the right to vaccinate or not) against the larger public good (the right to be protected from various diseases).

Disease is not simply the absence of health, because a person can live a perfectly healthy (and long) life with a chronic illness. But, diseases are processes that lessen how a person might live. It is thus valuable to consider how diseases manifest themselves, how and why they might spread, where they spread, and how they might be contained. At the same time, diseases are not simply the responsibility of individuals; they are often tied to the dynamic changes taking place in socio-cultural, political-economic, and environmental contexts. Moreover, diseases are not isolated from one another. In fact, co-infections or co-factors are common and can exacerbate the consequences of having certain diseases. Malnutrition diminishes the body’s capacity to fight off common infections, which other, healthier bodies might be able to handle. Immune-suppressing diseases such as HIV, or autoimmune diseases such as lupus, which attack their own host’s cells, make individuals susceptible to diseases that can eventually kill them. No one, in fact, dies from HIV disease (often called AIDS); they die from tuberculosis or malaria or even a common cold because their immune system is unable to produce antibodies to fight off the infection.

Despite the optimism that biomedical advances would be able to rid the world of most diseases, doctors are seeing a resurgence of older diseases and the emergence of new diseases. In this context, protecting biodiversity becomes even more important as people struggle to find ways to cope with both chronic and acute illnesses. In places where biomedical treatments are rarely available, common property resources form essential places for the development of nonbiomedical treatments and medications to minimize the severe symptoms associated with many diseases. The intricate link between disease, health, society, and environment is thus more complex when the invaluable significance of biodiverse ecoregions and their potential to provide shortand long-term mitigations against current and future diseases is considered. This includes biomedical interventions, which continue to also rely on both naturally and synthetically based medications that may help people cope with the day-to-day realities of trying to live healthy lives.

Bibliography:

  1. Andrew Cliff, Peter Haggett, and Matthew Smallman-Raynor, World Atlas of Epidemic Diseases (Oxford University Press, 2004);
  2. Susan Craddock, City of Plagues: Disease, Poverty, and Deviance in San Francisco (University of Minnesota Press, 2000);
  3. Sarah Curtis, Health and Inequalities: Geographical Perspectives (Sage, 2004);
  4. Paul Farmer, AIDS and Accusation: Haiti and the Geography of Blame (University of California Press, 1992);
  5. Anthony Gatrell, Geographies of Health: An Introduction (Blackwell, 2002);
  6. Jonathan Mayer, “The Political Ecology of Disease as One New Focus for Medical Geography,” Progress in Human Geography (v.20, 1996);
  7. Jonathan Mayer, “Geography, Ecology, and Emerging Infectious Diseases,” Social Science and Medicine (v.50, 2000);
  8. Melinda Meade and Robert Erickson, Medical Geography (The Guilford Press, 2000).

See also:

ORDER HIGH QUALITY CUSTOM PAPER


Always on-time

Plagiarism-Free

100% Confidentiality

Special offer!

GET 10% OFF WITH 24START DISCOUNT CODE